Linear Digressions

A podcast by Ben Jaffe and Katie Malone

Categories:

289 Episodes

  1. Interview with Joel Grus

    Published: 10/06/2019
  2. Re - Release: Factorization Machines

    Published: 03/06/2019
  3. Re-release: Auto-generating websites with deep learning

    Published: 27/05/2019
  4. Advice to those trying to get a first job in data science

    Published: 19/05/2019
  5. Re - Release: Machine Learning Technical Debt

    Published: 12/05/2019
  6. Estimating Software Projects, and Why It's Hard

    Published: 05/05/2019
  7. The Black Hole Algorithm

    Published: 29/04/2019
  8. Structure in AI

    Published: 21/04/2019
  9. The Great Data Science Specialist vs. Generalist Debate

    Published: 15/04/2019
  10. Google X, and Taking Risks the Smart Way

    Published: 08/04/2019
  11. Statistical Significance in Hypothesis Testing

    Published: 01/04/2019
  12. The Language Model Too Dangerous to Release

    Published: 25/03/2019
  13. The cathedral and the bazaar

    Published: 17/03/2019
  14. AlphaStar

    Published: 11/03/2019
  15. Are machine learning engineers the new data scientists?

    Published: 04/03/2019
  16. Interview with Alex Radovic, particle physicist turned machine learning researcher

    Published: 25/02/2019
  17. K Nearest Neighbors

    Published: 17/02/2019
  18. Not every deep learning paper is great. Is that a problem?

    Published: 11/02/2019
  19. The Assumptions of Ordinary Least Squares

    Published: 03/02/2019
  20. Quantile Regression

    Published: 28/01/2019

4 / 15

In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.

Visit the podcast's native language site